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Abstract

The energy deposition map is one of the essential Network Model in-
puts. A Network Model is used to study the thermodynamic behavior
of magnet coils and to calculate the quench levels in the superconducting
magnets for expected beam loss profiles (energy deposits). In order to pre-
pare the input to Network Model an interface between FLUKA or MARS
output and Network Model is needed. This paper describing the 2D in-
terpolation of energy deposition map from FLUKA or MARS onto the
coordinates of magnet coil conductors. The study if two magnet cross-
sections at different bin z have heat loads that display an approximate
linear relationship was also performed.

1 Introduction

1.1 Background

Magnet quenching in the LHC [1] is undesirable, so one would like to minimize
the number of quenches. In order to do so, one needs to calculate the quench
limit of each proposed magnet design. The magnet quench during accelerator
operation can be provoked by energy deposited in the superconductor by the
particle beams [2, 3]. In particular, particles impacting on the vacuum chamber
and their secondary showers deposit energy in the magnet coils [4]. In order to
calculate the energy depositions, Monte Carlo simulations, namely MARS [5, 6]
and FLUKA [7, 8], were used to model particle interaction and transport.

Typically these codes homogenize the magnet and calculate energy deposi-
tions in some standard coordinate system. However, for certain applications,
including computing the thermodynamics of the magnet, energy depositions in
each of the individual conductors are needed for precise computations. The co-
ordinates of these conductors do not, in general, correspond to the coordinates
output by FLUKA and MARS (see figure 1), so interpolation is necessary. In
particular, the network model for heat transfer [9, 10] requires such interpola-
tion.
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Figure 1: Diagram of the conductors in one proposed quadrupole magnet.

Figure 2: Closeup of partial coordinates of magnets vs coordinates of FLUKA simula-
tions in 2 cases. Left: Colored points are FLUKA data points, and the color indicates
the energy deposition. Dark blue points indicate conductor coordinates. Right: Empty
circles indicate conductors.
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For high resolution simulations of the energy depositions, a simple inter-
polation method, such as nearest neighbor or linear interpolation will suffice.
However, if the output data is lower resolution, more advanced nonlinear meth-
ods may be necessary. The left plot in figure 2 shows a FLUKA simulation
with tight binning and less need for interpolation; the right plot shows a low
resolution binning scheme in which interpolation is more important.

The most challenging aspect of preparing a model for the energy deposition
map is that the energy depositions are 3-dimensional and complicated, with
several maxima at different levels for each longitudinal plane. One way to deal
with this is to attempt to find an interdependence between different the energy
depositions at different longitudinal cross-sections. The simplest method is to
find a linear relationship between the energy deposits in any two longitudinal
bins. Such a relationship would reduce the difficulty of performing analysis on
the energy deposition map.

1.2 Project Description

Two 2-dimensional interpolation routines for one longitudinal bin namely a bi-
linear method and a bicubic method, were written. This was extended to a 3-
dimensional routine by locating the cross-section with greatest energy deposits
and interpolating on this. This routine works for both FLUKA and MARS
outputs. These methods were used to interpolate the energy deposition maps
from FLUKA and MARS onto the ROXIE [11, 12] conductor coordinates for
the magnet.

Based on these data, the nature of the energy deposition maps was studied.
In particular, it was be observed how close to linearly proportional the heat
loads are for any two longitudinal bins. This was accomplished through use of
both statistical analysis and graphical techniques.

2 Interpolation

2.1 2-Dimensional Interpolation in FLUKA

The output data from FLUKA are given as a regular grid in polar coordinates,
which does not correspond to the conductor coordinates from ROXIE. To alle-
viate this, we must interpolate the energy deposition map from FLUKA onto
the coordinates of the conductors.

2.1.1 Bilinear Interpolation

The first interpolant we consider, which is the simplest nontrivial interpolant in
2 dimensions, is a bilinear method:

Definition 1 Suppose E(r, φ) is a function of two variables whose values are
known on a finite grid

Λ = {ri = r0 + i∆r | i = 0, . . . ,m− 1} × {φj = φ0 + j∆φ | j = 0, . . . , n− 1}
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in polar coordinates, where ∆φ = 2π
n to ensure 2π-periodicity of φ. We define

the polar bilinear interpolant LE(r, φ) by the following:
For (r, φ) ∈ [r′, r′ + ∆r)× [φ′, φ′ + ∆φ), where (r′, φ′) ∈ Λ, let

LE(r, φ) :=

(
r′ + ∆r − r

∆r

)(
φ′ + ∆φ− φ

∆φ

)
E(r′, φ′) +

(
r − r′

∆r

)(
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∆φ

)
E(r′ + ∆r, φ′)

+

(
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∆r

)(
φ− φ′

∆φ

)
E(r′, φ′ + ∆φ) +

(
r − r′

∆r

)(
φ′ − φ

∆φ

)
E(r′ + ∆r, φ′ + ∆φ).

Bilinear interpolation is the simplest 2-dimensional interpolation method
other than nearest-neighbor interpolation, which is not particularly useful. Qual-
itatively, the method assigns LE(r, φ) based on its 4 nearest neighbors in such
a way that LE(r, θ) is a linear function in r for any θ and LE(s, φ) is a linear
function in φ for any s. It provides a continuous interpolant. Because it de-
pends not only on r and φ linearly, but also has a linear dependence on their
product rφ, the method is actually quadratic, but as LE(r, φ) can be written as
a product of linear functions in r and in φ, it is known as a bilinear interpolant.

A bilinear interpolation method was written to take the regularly gridded
output from FLUKA and output the interpolated energy deposition values at
the various conductor positions. This method is flexible enough to work with
different numbers of bins in r and φ, i.e. different values of m and n. Because
FLUKA data for the inner and outer layers of the magnet is separate, it also
accommodates this by first checking which region the desired point is in, then
interpolating in that region.

Procedure This procedure takes FLUKA output energy deposition data and
magnet coordinates from ROXIE as its inputs. The procedure iterates on the
rows of the ROXIE coordinates file. For each conductor, the interpolation pro-
cedure computes the position (r, φ) of the conductor from the given (x, y). By
testing the value of r and comparing this to the values in the inner and outer
layers, it determines which region the point falls into. After this, it uses the
data only from that region.

From the given (r, φ), the quantity r−r0
∆r is computed. The integer part of

this indicates the FLUKA radial bin ri to be used for r′ selected as the lower
bound of the region; ri+1 is the upper radial bound. In the case that i < 0
or i > m − 2, interpolation is not technically possible, but by forcing i = 0 or
i = m − 2, a decent extrapolation can be achieved. φ′ = φj is calculated the
same way, except that rather than forcing extrapolation in this case, we exploit
the periodicity of φ near the edge.

2.1.2 Bicubic Interpolation

Bilinear interpolation works by fitting the 4 nearest known points to a product
of linear functions. Likewise, bicubic interpolation works by fitting 16 nearby
points to a product of cubic functions. This is a more general method than
bilinear expansion, and is expected to be more accurate.
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Definition 2 Take everything as in the definition of the bilinear interpolant.
Then the bicubic interpolant is defined piecewise as the unique function CE(r, φ)

which is of the form

3∑
e=0

3∑
f=0

ce,fr
eφf for (r, φ) ∈ [r′, r′ + ∆r) × [φ′, φ′ + ∆φ)

where ce,f are coefficients determined so that

3∑
e=0

3∑
f=0

ce,fr
eφf = E(r, φ) for

(r, φ) = (r′ + k∆r, φ′ + l∆φ), where k, l = −1, 0, 1, 2

This definition has an obvious generalization for any 2D polynomial inter-
polation, which includes the bilinear case. The coefficients can be solved for,
as in the bilinear case, as a linear function of the known values of E. Higher
orders of polynomial interpolants are also possible, but tend to have too many
free parameters to be useful.

This method’s most important feature is its nonlinearity, as the energy de-
positions are known to be nonlinear at some level. Because the grids we have
are not in general high-resolution, there is reason to believe that more advanced
methods will not produce any better results, and may indeed be a burden due
to phenomena associated with interpolating with large numbers of model pa-
rameters.

Procedure The same procedure is followed from the linear interpolation, ex-
cluding some modifications. The inputs are all taken the same as in the case of
linear interpolation. Bicubic interpolation requires 16 points around the desired
interpolation point, rather than the 4 points for bilinear interpolation. As such,
i ≥ 1 and i ≤ m − 3 are needed, rather than in the above case. However, it
is noted in practice that bicubic expansion behaves poorly near the edge of the
data set, causing undesirable artifacts. As such, rather than extrapolating in
the case these conditions are not met, the code defaults to linear extrapolation
for that particular point.

The only other significant difference in the computation of CE(r, φ) from
LE(r, φ) is how the coefficients are chosen. These are given by a 16× 16 matrix
expression [13]. The problem then reduces to evaluating the matrix product,
and evaluating the cubic interpolant.

2.1.3 Results

The results of both interpolation procedures was as expected (see figures 3-5).
Both were able to interpolate accurately avoiding undesirable behavior in most
of the magnet. Very near the edge of the magnet, the bicubic interpolation–a
6th order method–behaves somewhat poorly due to Runge’s phenomenon and
lack of useful interpolating data. As such, it was decided that in this region,
the bicubic method would be substituted by the bilinear method.

The difference in the methods is at maximum approximately 10% of the
energy depositon in that region (see figure 5). This is considered an acceptable
level, given that the FLUKA code has error on the order of a factor of 2 due
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Figure 3: Plot of result from using a bilinear interpolant on the FLUKA output data.

Figure 4: Plot of result from using a bicubic interpolant on the FLUKA output data.

Figure 5: Plot of the difference LE(r, φ)−CE(r, φ). Note the scale difference between
this and the previous two plots.
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to uncertainty associated with particle production and other random effects.
The performance speed of both codes was not an issue, so bicubic interpolation
proved the better of the two methods for future use.

2.2 Interpolation on MARS Simulations

MARS does similar calculations to FLUKA, but with a different method giving
energy depositions per unit mass instead of per unit volume. By using the
density of the magnet, these can easily be converted to the desired units. They
provide a cross-check for each other, as they use different methods but end with
the same results[14]. The major difference between FLUKA and MARS output
for the purposes of interpolation is that FLUKA uses cylindrical coordinates,
while MARS gives results in Cartesian coordinates.

Unlike in the case of FLUKA, for MARS, the simulation region extends far
past the magnet in all directions. As such it is not necessary to extrapolate
and/or use linear in the place of cubic interpolation, as data surrounding the
desired location is abundant.

The replacement of polar (r, φ) coordinates with Cartesian (x, y) coordinates
is in practice of little significance. If anything, because x and y are symmet-
ric, the code is expected to perform slightly better with Cartesian coordinates.
MARS data is frequently not as high-resolution as FLUKA data, so the cubic
interpolant may have greater improvement over the linear interpolant in this
case.

2.2.1 Results

The interpolation for MARS data is similar to that of FLUKA. The magnet
being simulated here [15] is not the same geometry as that of FLUKA, so nu-
merical comparisons between the two are not possible. As the resolution of the
MARS grid is significantly lower, it is expected that the difference between the
two interpolants will be larger than in the case of FLUKA.

In fact, this is not observed significantly. The difference is still approximately
10% between the two methods at maximum. This provides good confirmation
that both methods are well-conditioned for this particular problem.

Unlike in the case of the first FLUKA simulation, where the differences were
approximately randomly distributed through the region of large heat load, here
a definite pattern exists for the difference of the two interpolants. With the lower
resolution MARS data, the two interpolants have a larger region between points
in which to deviate from each other, so larger scale effects are seen. Certain
artifacts present in the case of FLUKA simulations near the edge of the magnet
coils are not present here.
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Figure 6: Plot of result from using a bilinear interpolant on the MARS output data.

Figure 7: Plot of result from using a bicubic interpolant on the MARS output data.

Figure 8: Plot of the difference LE(r, φ)−CE(r, φ). Note the scale difference between
this and the previous two plots.
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2.3 Extension of Interpolation on FLUKA Simulations to
3-Dimensions

2.3.1 Motivation and Theory

MARS selects and returns the longitudinal bin with maximal heat load, giving
the 2-dimensional energy deposit map in the most affected area. However,
FLUKA’s output consists of the whole 3-dimensional picture of the magnet.
In order to select the most affected areas in z, a full 3-dimensional method is
needed.

There are several possible ways to extend the above method to 3-dimensions.
One might first think of using 3-dimensional interpolation, which is itself an ob-
vious generalization of the 2-dimensional case. For most applications, however,
only a 2-dimensional energy deposition map is needed, so this is unnecessary.

Instead, it should be acceptable to use the 2-dimensional methods on the
individual cross-sections. For quench simulations, only considering those few
cross-sections with the largest energy deposits should be sufficient, as these ar-
eas are most vulnerable to quenching. For this, two measures are used for what
constitutes a large energy deposit–namely, the maximal energy deposit at a sin-
gle point, and the total energy deposit for the whole of the longitudinal bin, i.e.

zmax is such that there exists (r′, φ′) ∈ Λ with E(r′, φ′, zmax) = max
r,φ,z

E(r, φ, z).

ztot is such that
∑

(r,φ)∈Λ

E(r, φ, ztot) = max
z

∑
(r,φ)∈Λ

E(r, φ, z).

In most cases, zmax ≈ ztot, as the energy deposition maps are relatively well-
behaved in all three variables.

Procedure In order to use the whole 3-dimensional description of the magnet,
with all longitudinal bins, the output file from FLUKA must be read in directly
by the procedure. This will allow the program to find the longitudinal bin with
largest heat load and create the input data corresponding to that bin to use in
the 2-dimensional interpolation routines.

Data are read in assuming the standard FLUKA output file. As the data
are being read in, if the integrated maximum is being searched for, the total
integrated heat load in each bin is also computed. If the individual maximum
is searched for, this is kept as well. From these, the program constructs a valid
FLUKA input spreadsheet corresponding to the file, which can then be used for
2-dimensional interpolation. This program must be run on both the inner and
outer data, which will then correspond to the same longitudinal bin, before any
meaningful interpolation can be done.
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3 Linearity Study

3.1 Global Tests

One hypothesis regarding the energy deposition maps is that the longitudinal
bins have energy depositions linearly proportional to each other. Particularly,
one would like to know given two z-bins, how close to linear is the relationship
between their energy depositions. Mathematically, we want a separation of
variables-type of expression, i.e. something of the form:

E(r, φ, z) ≈ Ω(r, φ) Z(z)

Note that if such an expression exists, then certainly many such expressions

exist, as (cΩ(r, φ))
(
Z(z)
c

)
= Ω(r, φ) Z(z), so we may choose either Ω or Z to

be normalized in some way. As such, it will be beneficial to instead consider
expressions of the form

E(r, φ, z) ≈ k Ω(r, φ) Z(z)

for constant k, as this allows both Z and Ω to be normalized. Furthermore, it
is helpful to restrict consideration to the inner cable layer of the magnet, as this
is the most vulnerable to quenching.

It is easy to see that the optimal way to set Ω is by setting it as the normalized

average energy deposition for that value of (r, φ), i.e. Ω(r, φ) =
1

nz

nz∑
i=1

E(r, φ, zi),

and similarly Z(z) =
1

mn

∑
(r′,φ′)∈Λ

E(r′, φ′, z). Here, the undetermined constant of

proportionality k is determined in such a way that the total energy deposition

over the whole magnet is preserved, i.e.
∑
r,φ,z

E(r, φ, z) = k
∑
r,φ

Ω(r, φ)
∑
z

Z(z).

To test how accurate this method is, it is best to normalize Z(z) so that∑
z

Z(z) = 1. Then each data line E(r, φ, z) for all z implies a particular value

for k Ω(r, φ). We can calculate the coefficient of variation

µΩ(r, φ) =
σz(kz Ωz(r, φ))

〈(kz Ωz(r, φ))〉z

of these values, which gives a measure of the variability in the model. A small
coefficient of variation (µΩ � 1) indicates the model holds quite well in this
case, while a larger µΩ suggests it does not hold.

The results from this suggested that the relation does not hold particularly
well (see figure 9). The coefficient of variation ranged from about 0.5 to 0.75,
which are rather large. However, an important property we observe here is that
µΩ is not independent of position.
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Figure 9: Plot of µΩ vs. magnet position.

In fact, an unpredicted correlation exists between the energy deposition map
E and the coefficient of variation µΩ. The energy depositions for most cross-
sections are qualitatively quite similar. All exhibit 4 maxima at the centers of
the inner edges of the magnets. Three of these–here, the left, bottom, and right,
are typically significantly lower in magnitude than the fourth. Here, all three of
these have low µΩ, while the largest maximum has the highest µΩ.

This suggests that the model may not be exactly the same in all regions of
the magnet. If this were the case, the strange behavior of µΩ would be easy
to explain–due to the larger magnitude of data at the level of the smaller local
maxima, the model fitted those points more accurately. On the other hand, the
larger local maximum was an outlier, and as such had the highest variability.
An easy way to test this hypothesis is to simply restrict the data set to an
appropriate subset. The model will perform significantly better if this is the
case.

3.2 Local Studies for Linearity

3.2.1 Maximal Study of Variability in Linear Model

It is conceivable that the failure of the above model is because different parts
of the coil must be fit differently. If this is the case, there are a number of ways
to test such a hypothesis. The first is to only consider a small number of (r, φ)
values in the same part of the magnet. The most interesting part of the magnet
is near the maximal heat deposits, and correspondingly this also has the lowest
associated error in the FLUKA calculation. As such, it makes sense to restrict
to some small number of (r, φ) where the energy deposits are maximized; in
practice these are almost all in the same region of the magnet.’
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Figure 10: Plot of µZ vs. z for different numbers of (r, φ) points. There are a total
of 14 bins in r and 384 in φ; 500 bins represents approximately 9.3% of the magnet.

Figure 11: Plot of Z(z) vs. z. The scale on the vertical axis is arbitrary. Note that
the maximum corresponds to areas of low variation in figure 10.

Figure 12: Plot of E(z) vs. z for the 10 values of (r, φ) with maximal E. Qualitatively,
this appears to have the desired form.
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We recall that there are two possible measures for what (r, φ) values have
maximal energy deposit–the absolute and the integrated measure. Previously,
the maximal value in z was found; here the same procedures are used to find
maxima in (r, φ). These give almost exactly the same results in all cases, so
it will be sufficient to consider only the integrated measure for energy deposit,
which behaves slightly better with random errors.

Figure 10 shows how the longitudinal coefficient of variation µZ behaves vs
z for 5, 20, 100, and 500 values of (r, φ) corresponding to the largest integrated
energy deposits. µZ is defined analogously to µΩ, but measures the variability
as a function of z instead of as a function of r and φ. Comparing with figure
11, it is clear that the separation of variables performs better at larger energy
depositions, which is thought to be due to random errors constituting a larger
fraction at smaller energy depositions. It is not a problem, however, as the region
of interest is conveniently precisely where the energy depositions are large.

Figure 13: Plot of (r, φ) points chosen by the method. Here black corresponds to points
1-5, brown to 6-20, red to 21-100, and yellow to 101-500. Note that all the points not
in the upper pole are yellow.

An unwanted phenomenon is observed as the number of (r, φ) points in-
creases. Some of the points begin to fall outside the desired pole of the magnet.
In figure 13, it is clear that the method begins choosing points outside the de-
sired pole between 100 and 500 points. This may correspond to the substantial
increase in µZ for 500 points over 100 points. To alleviate this, the simplest
method is to restrict to points inside the desired pole.
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3.2.2 Restricting to One Quadrant

Restricting to one pole can be done entirely by eliminating data with the incor-
rect bins in φ. For the top pole, π

4 < φ < 3π
4 , which corresponds to the pole

with the observed maximum energy deposit. Figure 14 shows the points chosen
once restricted to the desired pole. The 500 points chosen represent over 38%
of the pole, and constitute significantly more than half of the energy deposition
in the pole.

It is notable that this restriction is justified from a practical perspective.
The poles are separated by cooling channels, which effectively stop a quench
from advancing to the other poles. There is little heat interaction between the
poles due to these channels. As such, simulations of the individual poles are
sufficient to describe the dynamics.

Figure 15 compares the the restricted and unrestricted methods for 500
points–the only case where they disagree. The results for the restricted method
are somewhat better than the unrestricted method. µZ did decrease in most
cases, but the decrease was not particularly drastic. µZ remains at the 10%
minimum level, but this method increases the range in which the seperation of
variables is accurate.

The improvement is not as good as expected, which supports the alternate
theory that the variation is caused by random fluctuations associated with the
model, which are more significant at smaller energy deposition levels–as more
points are added, this effect will eventually dominate the variability, limiting
the range in which it is accurate. This is not expected to cause major problems
since one can easily extrapolate to the points of lower energy depositions, which
are less significant in quench studies.

3.3 Additional Test by Comparison of Different Z-bins

3.3.1 Full Cross-sectional Comparison

The above material may be enough to justify the model numerically, but demon-
strations of the accuracy in particular cases are desirable to validate the method-
ology. In particular, this will be useful to determine how accurate such an ap-
proximation may be in practice, based on more familiar measures of variability.
The error can be analyzed on the basis of individual bins, rather than averaged
over the entire magnet.

One way to do this is to make a scatter plot of the energies in 2 separate
z-bins. If the expression holds, i.e. E(r, φ, z) = Ω(r, φ)Z(z), then we must

have E(r,φ,z1)
E(r,φ,z2) = Z(z1)

Z(z2) a constant. So we expect that for any z1, z2, the plot of

E(r, φ, z1) vs E(r, φ, z2) for all (r, φ) should be linear in nature.
Figure 16 shows this correspondence for 8 randomly selected pairs of lon-

gitudinal bins. There are several interesting trends that are observed in these
and other plots. These plots confirm the prediction of the previous method that
the linear behavior is more closely followed at higher energy depositions. For
instance, in the plot of bin 101 against 103–two of the bins with the highest
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Figure 14: Plot of (r, φ) points chosen by the method after restricting to the top pole.
Here black corresponds to points 1-5, brown to 6-20, red to 21-100, and yellow to
101-500.

Figure 15: Comparison of µZ for unrestricted and restricted methods. The red curve
is the same as in figure 10, while the blue uses the data restricted to the top pole.
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Figure 16: Comparisons of energy depositions in 8 randomly selected pairs of longi-
tudinal bins. Note that the linearity improves at higher energy depositions.
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energy deposition–the observed R2 value for the inner coils is approximately
0.92. By contrast, in the plot of bin 4 against bin 29, the R2 value for the inner
part of the magnet is only 0.57, suggesting departure from the model. The R2

values for the outer part are consistently lower than for the inner part, again
agreeing with expectations. Qualitatively, one can also see in several plots that
the data cluster near the regression line much more closely at the higher energy
deposits than at lower energy deposits.

A major problem with these plots is the problem of regression dilution. The
regression lines given are optimal assuming no variance exists in the independent
variable. This is not the case here, and thus if the slopes of the regression lines

were used to predict the quotient Z(z1)
Z(z2) , this would lead to an attenuation bias.

The practical effect is that the correspondence, and consequently the slope of
the regression line, is always underestimated, and consequently the y-intercept
is always overestimated. This effect is stronger at lower R2 values, explaining
why the outer coils consistently have a lower slope than the inner coils. It
is possible to correct for attenuation bias or to use regression methods which
are symmetric in independent and dependent variables, but these have other
associated undesirable features. The main object of interest is not the value of
Z(z1)
Z(z2) , which can easily be calculated by other methods, but the accuracy of the

approximation, given by the R2 value, which is symmetric in the variables.
The best R2 value shown is about 0.92, which corresponds to a coefficient

of determination of about 0.96. However, in many other cases the results are
not as close to the desired value of R2 = 1. Part of the reason for this is the
inclusion of the whole cross-section. One might think that including only points
in the inner cable layer of the magnet in one pole, and restricting to those (r, φ)
with large energy deposits, would produce better results, as in the previous case.

3.3.2 Restricted Comparisons

As before, data are restrict to the top pole, which exhibits the largest energy
depositions. One pole represents 96 bins in φ in the FLUKA, each corresponding
to 14 bins in r. For the value of (r, φ, z) with maximal energy deposit, keeping
r and z constant and varying φ, it is found find that E(r, φ, z) has decreased by
a factor of 2 approximately 10 bins in each direction from the maximum. As
such, only the φ values between 1.415217 and 1.775181 are kept, corresponding
to bins 279 to 301 out of 384. With this, approximately 8% of the magnet is
used.

Surprisingly, this is not observed. Figure 17 shows the results of regression on
this reduced data set for the same cases as figure 16. The R2 values in the cases
where the regression worked well previously show slight improvement. However,
in most of the cases where it worked poorly before, there is little improvement,
and in some cases a reduction in accuracy. One explanation is that the data
have gotten narrower in extent due to the restriction, which would reduce the
R2 value. Previously, the energy deposits got near 0; now their lower bounds
are approximately 25% of the upper bound, suggesting a reduced extent along
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Figure 17: Comparisons of energy depositions in 8 randomly selected pairs of longi-
tudinal bins after restricting to the top pole near the largest energy deposits. The data
do not show significant improvement over the original unrestricted comparisons.
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Figure 18: Comparisons of energy depositions in 8 randomly selected pairs of longi-
tudinal bins after restricting to the entire top pole. Unlike in figure 17, here there is
significant improvement.
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the axis of dependence.
Figure 18 confirms that this is the likely explanation–plots after restricting

to the top pole, but no further, show significant improvement in general over
both of the previous plots. These extra data points near the origin provide
confirmation of the model rather than add variability, seemingly contradicting
previous results. However, two different meanings of variability are implied–in
the previous method, the variability was inversely proportional to the mean
energy, while here it is independent of mean energy.

Both measures of variability appropriate in different contexts; when study-
ing and computing values of Z(z) or modeling the most sensitive portions of
the magnet, µZ is the most important measure, but when modeling all of a
particular cross-section, the R2 measure is more useful. This is supported by
the existence of regression dilution, which implies that computation of values
of Z(z) through regression will be inaccurate, and that the optimal method is
through the averaging done in section 3.1. One could correct for the attenua-
tion bias, but doing so is complicated and error-prone, requiring multivariate
statistics, and provides no significant advantages over the averaging method.

4 Conclusions

Bilinear and bicubic interpolation methods were used to interpolate the energy
deposition maps onto the coordinates of the conductors. Both the interpolation
methods have been tested and demonstrated useful for both FLUKA and MARS
data. The fact that they agree to within about 10% provides confirmation of
the success. In particular, they will not add significant additional error to the
energy deposition calculations, which already have intrinsic error associated
with MARS or FLUKA.

This will be useful in the future. The network model allows computation
of magnet limiting conditions, which depend on external factors as well as the
energy deposits. The interpolation routines will provide the necessary interface
between the FLUKA and MARS simulations, which work in one coordinate
system, and the network model, which uses a different coordinate system. It is
thus an important component in quench protection, and the accuracy displayed
helps reduce the uncertainty in the model.

Approximate linearity in the cross-sectional energy deposition maps was
demonstrated. In particular, in the regions of interest, i.e. those of large en-
ergy deposits, the linearity is followed quite closely. In areas of lower energy
deposition, the intrinsic errors from FLUKA are higher, so to a good approxi-
mation the linearity is held.

This result may prove useful in a number of ways in the future. Simulations
like FLUKA could possibly be simplified by making such an approximation.
This would allow for faster and more accurate simulations. Alternatively, with
more data, one could conduct analysis on the component parts of the energy
deposition map, Ω(r, φ) and Z(z). Tests of linearity over a different type of
magnet, such as a dipole, could also be done. This would give an idea when the
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approximation is accurate, and how it breaks down.
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